来源:互联网
2023-04-30 15:02:23
(相关资料图)
1、两对数相乘无法利用对数的运算性质求解,因此在解决此类问题时,要根据所给的关系式认真分析其结构特点,主要有三种处理方法:利用换底公式;2、整体考虑;3、化各对数为和差的形式。
2、举题说明:log2 25•log3 4•log5 9解:原式=log2 5² × log3 2² ×log5 3²=2log2 5 × 2log3 2 × 2log5 3=8 【(lg5)/(lg2)】 × 【(lg2)/(lg3)】 × 【(lg3)/(lg5)】=8扩展资料:对数的运算法则:log(a) (M·N)=log(a) M+log(a) N2、log(a) (M÷N)=log(a) M-log(a) N3、log(a) M^n=nlog(a) M4、log(a)b*log(b)a=15、log(a) b=log (c) b÷log (c) a指数的运算法则:[a^m]×[a^n]=a^(m+n) 【同底数幂相乘,底数不变,指数相加】2、[a^m]÷[a^n]=a^(m-n) 【同底数幂相除,底数不变,指数相减】3、[a^m]^n=a^(mn) 【幂的乘方,底数不变,指数相乘】4、[ab]^m=(a^m)×(a^m) 【积的乘方,等于各个因式分别乘方,再把所得的幂相乘】。
本文就为大家分享到这里,希望小伙伴们会喜欢。